

Global Energy and Water Cycles

EDITED BY

K. A. Browning and R. J. Gurney

332/868 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRCHHAUSER STR. 2 - 30419 HANNOVER

Contents

List of contributors vii Preface x Foreword xii Acknowledgements xii

1	The	e global energy and water cycles	page 1
	1.1	The global energy cycle Richard D. Rosen	1
	1.2	The global water cycle Taikan Oki	10
2	Glo	obal atmospheric models, data assimilation, and	
	app	plications to the energy and water cycles	30
	2.1	Atmospheric models for weather prediction and climate simulations Eugenia Kalnay	30
	2.2	$Numerical\ approximations\ for\ global\ atmospheric\ models\ {\it David\ Williamson}$	33
	2.3	Parameterization of subgrid-scale processes Hua-lu Pan	44
	2.4	Principles of data assimilation Milija Zupanski and Eugenia Kalnay	48
	2.5	Estimation of the global energy and water cycle from global data assimilation Glenn White and Suranjana Saha	55
	2.6	Coupled atmosphere–ocean modeling for climate simulation and prediction Ming Ji and Arun Kumar	61
3	Atr	nospheric processes and their large-scale effects	71
	3.1	Radiative effects of clouds and water vapor Grame L. Stephens	71
	3.2	Effects of aerosols on clouds and radiation Peter V. Hobbs	91
	3.3	Vertical transport processes T. Hauf and S. Brinkop	100
	3.4	Precipitating cloud systems Peter Jonas	109
A	C		124
4		rface and sub-surface processes	
		Estimating surface precipitation D. Rosenfeld and C. G. Collier	124
		Air–sea fluxes and their estimation Peter K. Taylor and Kristina B. Katsaros	134
		The ocean's response to the freshwater cycle Raymond W. Schmitt	144
	4.4	Physical and physiological feedback constraining evaporation from land surface <i>J. L. Monteith</i>	es 155
	4.5	Soil water P. J. Gregory	161
	4.6	Surface runoff and subsurface redistribution of water Eric F. Wood	166

Contents

5	Use of small-scale models and observational data to investigate coupled			
	processes	183		
	5.1 Mesoscale field experiments and models Jean-Claude André,			
	Joël Noilhan and Jean-Paul Goutorbe	183		
	5.2 Cloud-resolving models M. W. Moncrieff and WK. Tao	200		
6	Examples of the use of GCMs to investigate effects of coupled processes	213		
	6.1 The interaction of convective and turbulent fluxes in general circulation			
	models David Gregory, Andrew Bushell and Andrew Brown	213		
	6.2 Soil moisture–precipitation interaction: experience with two land surface			
	schemes in the ECMWF model Anton C. M. Beljaars and Pedro Viterbo	223		
7	Continental-scale water budgets	236		
	7.1 Estimating evaporation-minus-precipitation as a residual of the atmospheric			
	water budget Kevin E. Trenberth and Christian J. Guillemot	236		
	7.2 Factors determining the partitioning of precipitation into evaporation and			
	runoff P. C. D. Milly	247		
	7.3 The water budget of a middle latitude continental region: a modeling and			
	observational study Peter Rowntree	254		
	7.4 Estimating large scale run-off E. Todini and L. Dümenil	265		
R	The way forward	282		
U		282		
	8.1 Toward an integrated land–atmosphere–ocean hydrology <i>Moustafa T. Chahine</i>	202		
Ir	ndex	287		